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Abstract. We define a minimization problem with simple bounds associated to the horizontal linear 
complementarity problem (HLCP). When the HLCPis solvable, its solutions are the global minimizers 
of the associated problem. When the HLCP is feasible, we are able to prove a number of properties 
of the stationary points of the associated problem. In many cases, the stationary points are solutions 
of the HLCP. The theoretical results allow us to conjecture that local methods for box constrained 
optimization applied to the associated problem are efficient tools for solving linear complementarity 
problems. Numerical experiments seem to confirm this conjecture. 
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1. Introduction 

We consider the horizontal linear complementarity problem (HLCP): 
given Q, R E ~n• b E ffl n, find x, z E ~'~ such that 

Q x +  R z = b ,  x T z = O ,  x,z_>0.  (1) 

This problem is a generalization of the classical linear complementarity prob- 
lem (LCP): 

z = M x  + q, xT z = O, x, z >_ O, (2) 

where M E ~X~,qE ~ n .  
The linear complementarity problem has been studied by many authors (see 

[12], [3] and references therein). The reduction of (1) to (2) is trivial if R 
is nonsingular (take M = - R - 1 Q ,  q = R-Ib) .  If there exists a nonsingular 
matrix R = (Vl , . . . ,  vn) such that vj is either the j-th column of Q or the j-th 

* This work was supported by FAPESP (grants 90-3724-6 and 91-2441-3), CNPq and FAEP 
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column of R, we say that the HLCP is reducible. In this case, after a reordering of 
the variables, the HLCP takes the form 

Q~+_R~=b, xTz=0, X , Z > 0 ,  (3) 

which can be obviously reduced to (2). 
If Q and R are such that uTv >_ 0 whenever Qu + Rv = 0, we say that the 

HLCP is monotone. It can be proved (see [1] and [7]) that a monotone HLCP is 
necessarily reducible. So, for a monotone HLCP, rank (Q, R) = n. The first order 
optimality conditions of quadratic programming can be represented by an HLCP, 
which is monotone if the problem is convex (see [1]). 

Many methods for solving linear complementarity problems can be found in the 
literature. However, to reduce the HLCP to (2) (when this is possible) may not be a 
good strategy in some situations (for example, if R and Q are sparse but R-1Q is 
dense). Therefore, methods for solving the HLCP that do not modify the structure 
of Q and R should be studied. 

When there exists (x, z) satisfying (1) we say that the HLCP is solvable. If 
there exists x >_ 0 and z > 0 such that Qx + Rz = b, we say that the problem is 
feasible. When the HLCP is solvable, its solutions are the global minimizers of the 
following optimization problem: 

MinimizepllQx + Rz - bll 2 + xTz subjectto x _> 0, z > 0, (4) 

where p > 0 is an arbitrary constant. However, to find global minimizers of (4) 
is not easy, since stationary points may exist that are not global minimizers, even 
if the HLCP is monotone. For example, consider the trivial monotone horizontal 
linear complementarity problem (where n = 1, Q = 0, R = 1, b = 1): 

z = l ,  xz=O,  x>_O, z>_0. (5) 

The obvious solution of (5) is x = 0, z = 1. The associated (quadratic) global 
optimization problem is: 

Minimize p(1 - z) 2 + xz subject to x > 0, z >_ 0. 

This problem has a stationary point at x = 2p, z = 0, which is not a solution of 

(5). 
In this paper, we propose to use as auxiliary optimization problem, instead of 

(4), the following one: 

Minimize pllQx + Rz - b[I 2 + ( x T z )  p subject to x >_ 0, z >_ 0, (6) 

where p > 0 and p > 1 are arbitrary. Problem (6) was inspired by previous work 
of the authors on the resolution of large-scale linearly constrained optimization 
problems. See [5]. We will see that under general conditions (in particular, when 
the HLCP is monotone), the stationary points of (6) are global minimizers and, thus, 
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solutions of (1). This result allows us to use efficient algorithms for minimization 
with simple bounds, which are guaranteed to converge only to stationary points. 
See [2], [4]. 

We would like to emphasize that efficient algorithms for bound constrained 
optimization are available. A common feature to many of these algorithms is that 
no factorization of matrices is needed, so that very large problems can be solved. 
The reduction of the LCP to an optimization problem with linear constraints, where 
stationary points are necessarily global minimizers under fairly general conditions, 
is possible (see [3] (Chapter 3, Thm. 3.5.4), [13]) but the explicit ocurrence of 
linear constraints limits the size of the problems that can be solved in this case. 

In Section 2 of this paper we prove the main results concerning problem (6). 
In Section 3 we explain how to solve (1) using (6), and we show numerical 
experiments. Conclusions are given in Section 4. 

2. Main Results 

The first-order optimality (Karush-Kuhn-Tucker) conditions of (6) are: 

2pQT(Qx + Rz  - b) + p(xTz)P-lz -- 7 = O, (7) 

2pRT(Qx + Rz  - b) + p(xT z)p-lx - # = O, (8) 

xT7 = O, (9) 

zT# = 0, (10) 

x>_O, z > O ,  # > 0 ,  3">_0. ( l l )  

If (x, z) satisfies (9)-( l l ) ,  with 3' and # defined by (7) and (8), we say that (x, z) 
is a stationary point of problem (6). Modem algorithms for box constrained opti- 
mization are usually successful for finding stationary points (frequently local min- 
imizers) of minimization problems with simple bounds, like (6). So, it is important 
to detect situations where these stationary points are global minimizers. The fol- 
lowing theorem gives some critical properties of stationary points of (6) that are 
not solutions of the HLCE 

THEOREM 1. Assume that the HLCP (1) is feasible and that (x.,  z. ), a stationary 
point of  (6), is not a solution of the HLCP Let us define r. = Q x .  + Rz .  - b. 
Then, 

r .  r 0, (12) 

xT, z, > 0 (13) 

and 

T T r, RQ r, > O. (14) 
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Proof. Let us prove first (13). We proceed by contradiction. If xT, z ,  = 0, we 
have, by (7)-(11), that 

2 p Q T ( Q x .  + R z .  - b) - 7 = O, 

2 p R T ( Q x .  + R z .  - b) - # = O, 

xT. 7 = 0 

T z . # = 0  

x . > 0 ,  z . > 0 ,  # > 0 , 7 > 0 .  

(15) 

(16) 

(17) 

(18) 

(19) 

Now, (15)-(19) are necessary and sufficient conditions for a global minimizer 
of the following convex quadratic minimization problem: 

Minimizep l lQx  + R z  - btl 2 subjectto x >_ 0, z > 0. (20) 

Since, by hypothesis, the HLCP is feasible, it turns out that (x.,  z.) is a global 
solution of (20) with minimum value zero, that is, 

Q x .  + R z .  - b = O. 

Therefore, by (19) and the initial assumption, (x.,  z.) is a solution of the HLCP, 
contradicting the hypothesis. So, (13) is proved. 

Let us now prove (14). Again, let us suppose, by contradiction, that 

T T r.  R Q  r .  <_ O. 

Now, by (7), there exist 3' > 0, # > 0 such that 

T Z p-1 T p-1 (p (x .  . )  x .  - # ) T [QT 2p( Qx .  + R z .  - b) + p ( x .  z.) z. - 7] = 0(21) 

By (8), we have that 

p(xT  z . ) P - l x .  -- # = - 2 p R T ( Q x .  + R z .  - b). (22) 

But, if r T R Q T r .  <_ O, (21) and (22) imply that 

[ p ( x T z . ) P - I x .  - ~ ] T [ p ( x T z , ) P - I z .  -- "~] ~ 0, (23) 

Therefore, 

p2(;cTz . )2p-1  T )p-1  - p ( x .  z .  (xT7) -- p ( p T z . ) ( x T z . ) P - I  + #T 7 ~_ O. (24) 

Then, by (24), (9) and (10), we have that 

p2(~T~, "~2p- 1 ~ .  ~.j + #T7 _< 0. 
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So, by (11), the complementarity equation xr.z. = 0 holds. This is a contradiction, 
since in the first part of the theorem we proved (13). Therefore, (14) is also 
proved. 

Finally, observe that (14) trivially implies (12). QED 

The following corollaries state some straightforward consequences of Theorem 1. 

COROLLARY 1. Assume that (x. ,  z. ) is a stationary point of(6), and define r. = 
Qx .  + R z .  - b. Then, the following propositions hold: 

(a) I f  r.  = O, then (x . ,  z.  ) is a solution of the HLCP 
(b) I f  the HLCP is feasible and x.Tz. = O, then (x. ,  z.) is a solution of the 

HLCP 
(c) I f  the HLCP is feasible and 

T T r.  RQ r. < O, 

then (x . ,  z.  ) is a solution of the HLCP 
(d) I f  the HLCP is feasible and RQ T is negative semidefinite, then ( x . ,  z.  ) is a 

solution of the HLCP 

COROLLARY 2. Assume the hypotheses of Corollary 1. Le t /~  = ( v l , . . . ,  vn) 
be such that vj is either the j-th column of Q or the j-th column of R, and 
(~ = (wl, �9 �9 w~) such that wj is the j-th column of R when vj is the j-th column 
of Q and vice-versa. Then, 

r. RQ r. <_ O, then (x. ,  z,) is a solution of (a) I f  the HLCP is feasible and T ~ - T 
the HLCP. 

(b) I f  the HLCP is feasible and ~ Q T  is negative semidefinite, then (x~, z. ) is a 
solution of  HLCP (In particular, if Q R T is negative semidefinite, then ( x . ,  z.) is 
a soluti'on of the HLCP) 

In the following lemma we give a characterization of monotone horizontal linear 
complementarity problems that will allow us to prove that stationary points of (6) 
are global solutions of feasible monotone problems. 

LEMMA 1. Suppose that, after a possible renaming of the variables, an HLCP can 
be expressed as 

Qx + Rz  = b, x T  z ---- O, X, Z ~ O, (25) 

where R is nonsingular and RQ T is negative semidefinite. Then, the HLCP is 
monotone. Reciprocally, if the HLCP is monotone, then, for all possible renaming 
of  the variables with R nonsingular, RQ T must be negative semidefinite. 

Proof Suppose that the HLCP can be written in the form (25) with R nonsin- 
gular. Let u, v be such that 

Qu + R v  = O. 
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Then v = - R - 1 Q u .  We define w = R-Tu.  Since RQ T is negative semidefinite 
we have that 

0 < -wTRQTw : --wT.RQTR-TI:~Tw 
: --uTQTR-T~z : -uTR-1Qu --_ uTv. 

Therefore, the HLCP is monotone. Reciprocally, assume that the HLCP is monotone 
and let w E ~ n  be arbitrary. We define u = RTw, v = - R - 1 Q u .  So, Qu + Rv = 
0. Since the problem is monotone, we have that 

O< uTv : - u T R - 1 Q u :  -uTQTR-Tu 

= - -wTRQTR-TRTw = --wTRQTw. 

Therefore, RQ T is negative semidefinite. QED 

COROLLARY 3. Assume that the HLCP is monotone and feasible, and that ( x.,  z.) 
is a stationary point of(6). Then (x, ,  z.) is a solution of the HLCP. 

Proof As we mentioned in the introduction, if the HLCP is monotone, then, 
after a possible renaming of the variables, it can be expressed in the form (25). So, 
the conclusion follows from Lemma i and Corollary 2. QED 

REMARKS. We showed that, if the HLCP is feasible, the condition "RQ T negative 
semidefinite" is sufficient to guarantee that all the stationary points of (6) are 
global minimizers. This condition is more general than the monotonicity of the 
problem. For example, consider an HLCP with Q singular and R = - Q .  In this 
case RQ T is clearly negative semidefinite, but the problem is not monotone, since 
rank (Q, R) < n. (See [7], [1].) 

Theorem 1 and its corollaries give us a strong feeling that, very likely, a good 
"local" method applied to (6) (that is, a method whose convergence is guaranteed to 
stationary points) will be effective for solving the HLCP. In fact, according to these 
results, a stationary point of a feasible HLCP which is not a global minimizer of (6) 

r. RQ r .  > 0 for all possible partitions of (R, Q). This condition is must satisfy T " - T 
strong, so, roughly speaking, even if the problem is not monotone, the chances of 

T T the value r . / ~ Q  r .  being nonpositive for a stationary point of (6) are reasonable. 
We will find numerical evidence of our practical conjecture in Section 3. 

3. Numerical Experiments 

Problem (6) satisfies the following "global property": 
The objective function is nonnegative for all points on the feasible region f~ and 

it vanishes if and only if the corresponding minimizer solves the HLCP. 

In the case of (6) ,  ft = {(x ,z)  E tr/~ x ~ n  I x , z  >_ 0). Some authors 
introduced unconstrained minimization problems that satisfy the global property 
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above, associated to nonlinear complementarity problems and variational inequal- 
ities. See [11] and [6]. The Mangasarian-Solodov problem associated to the linear 
complementarity problem (2) is 

Minimize xT(Mx + q) + -~--s + q) + x)+ll 2 - Ilxll 2 (26) 

+ l l ( - ~ x  + Mx + q)+ll 2 -  ]IMx + ql12], 

where a > 1 is arbitrary and [v+]i =max (0, vi). It is proved in [11] that this 
problem satisfies the global property. However, even if M is positive semidefinite 
(monotone problem), local minimizers of (26) could not be solutions of (2). For 
example, it is easy to see that all the points {x E ~ I z > a} are local minimizers 
of the Mangasarian-Solodov problem associated to (5). Kanzow [10] proved that, 
when M is positive definite and the LCP is solvable, stationary points of (26) are 
solutions of the LCE Similar properties hold for Fukushima's function [6]. Observe 
that, in general, the objective function of (26) has continuous first derivatives but 
discontinuous second derivatives. 

Both the Mangasarian-Solodov approach and our approach (6) (with Q = M,  
R = - I  and b = - q) reduce the LCP to a minimization problem where the feasible 
set is simple ( ~ n  for (26) and the positive orthant of ~2~ in the case of (6)). 
Therefore, in both cases, we can use algorithms that do not use factorization 
of matrices, penalization, or estimation of Lagrange multipliers for solving the 
optimization problem. 

In this research, we employed the method for minimization of general functions 
with bound constraints described in [4] and [5]. This method produces a sequence 
of approximations (xk, za) such that, for all k = 0, 1, 2, .... (xk+l, Zk+l) is an 
approximate critical point of a quadratic on a 2n-dimensional box. (In the case of 
(26) the iterates are {xk} C ~ . )  It has been proved in [4] that limit points of 
the sequence generated by the algorithm are stationary points of the minimization 
problem. For finding the approximate critical point of each quadratic we use an 
algorithm that combines conjugate gradients and gradient projection techniques. 
Since no manipulation of matrices is present, the method is able to deal with large 
problems. The parameters used for running this method were the ones recommend- 
ed in [5], including the tolerances used to declare "convergence". In addition to 
the usual stopping criteria of the box constrained minimization algorithm, we also 
stopped the execution when 

f(xk, zk) <_ 10 -s  

where f is the objective function of problem (6). A similar convergence criteri- 
on was used in connection to (26). The maximum allowed number of iterations 
was 500. However, this maximum was reached only in the third set of experiments 
(Problem VD2 with a ~ 0). 
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For all our experiments, we used a PC-486 type computer, DOS operating 
system, Microsoft FORTRAN and double precision. We performed four sets of 
numerical experiments. 

3.1. FIRST SET OF EXPERIMENTS 

We generated a set of linear complementarity problems as follows: the matrix 
M E ~'~• n = 10, was generated as 

~M = S + A (27) 

where S is symmetric and A is skew-symmetric. Clearly, M is positive semidefinite 
if and only if S is. We defined (rr, 0, u) = (re(S), O(S), u(S)) the number of 
positive, null and negative eigenvalues of S. The matrix S of each problem was 
generated as 

T VlV  V l VT1 T S (I VnVn Vn V n 
2 ~ )  ( I -  2 ~ ' ) D ( I  = . . . . . .  2-7 - ) (28) % vn V[Vl" 2v~ v,) " " ( I  V n Vn 

where the vectors vi E ~ n  were randomly generated with entries between 0 
and 1, and D was a diagonal matrix with re entries randomly generated between 0 
and 10, ~ entries randomly generated between 0 and - 1 0  and O null entries. The 
matrix A was generated with random entries between - lO and lO on its strict upper 
triangular elements aij, with aji = -aij for all i, j .  The solution x, of the LCP 
was generated taking [x.]/ = 0 with probability 1, and [x.]i chosen at random 
between 0 and 10 for the positive entries. After the computation of x.  and M, we 
computed q E ~'~ in the following way: 

For i = 1 , . . . ,  n, if [x.]i > 0, we set qi = -[Mx.]i, while, if [x.]i = 0, we 
set qi = - [ M x . ] i +  [a random number between 0 and 10]. 

We tried to solve the LCP's defined above using the auxiliary subproblem (6) 
with p = 2, p = 1. We used the algorithm for box-constrained minimization 
introduced in [41 and [5] where the initial approximation (x0, z0) was generated 
with random entries between 0 and 10. In addition, we tried to solve the same 
problems using the unconstrained minimization problem (26) ((~ = 2) and x0 as 
initial approximation. Since the LCP's generated are solvable, their set of solutions, 
the set of global minimizers of (6) and the set of global minimizers of (26) are 
identical. For each triplet (rr, 0, 9) we generated ten different problems. In Table 1 
we report the number of cases in which the algorithm converged to the solution of 
the LCP using (6) and (26) respectively. In the parentheses we indicate the average 
number of iterations of the successful runs. 

In Table I we observe that the efficiency of the approach (6) for finding solu- 
tions of the LCP is between 60% (when re is small and u is large) and 100% 
(when u = 0). On the other hand, the approach based on (26) is very good when re 
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TABLE I. Random problems varying r ,  0, u. 

rr 0 u Problem (6) Problem (26) 

0 2 8 7 (14) 1 (6) 
1 2 7 6 (14) 2 (8) 
2 2 6 8(11) 4(12) 
3 2 5 8 (13) 7 (46) 
4 2 4 9 (16) 7 (31) 
5 2 3 10(18) 6(41) 
6 2 2 9 (18) 9 (33) 
7 2 1 9 (16) 10 (37) 
8 2 0 10 (14) 10 (44) 
0 4 6 6 (14) l (5) 
3 4 3 7 (50) 4 (24) 
6 4 0 10(16) 10(31) 
0 7 3 7 (16) 2 (21) 
3 7 0 10 (17) 10 (46) 
0 10 0 10(15) 0 
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is large but fails frequently when 7r is small. 

3.2. SECOND SET OF EXPERIMENTS 

We generated non-reducible horizontal linear complementarity problems. We com- 
puted Q c ht~ (~z - l) x n with random entries between - 10 and 10 and R = - Q +/3T, 
where T E ht~ (~-l)xn had random entries between - 1 0  and 10, and/3 E [0, 10]. 
(As before, we used n = 10.) Then, we defined 

: 1 ) )  

and 

R = 1 ) ) ,  

where e_ = ( 1 , . . . ,  1) T C ~ n - 1 .  So, the rank of (Q, R) is at most equal to n - 1 
and, consequently, the problem is not reducible. If 13 = 0, we have R = - Q  so 
that the condition "RQ T negative semidefinite" is satisfied. As fl is incremented, 
this hypothesis becomes less probable. The coordinate j of x.  was zero with prob- 
ability �89 and a random number between 0 and 10 with the same probability. When 
this coordinate is not zero, the corresponding coordinate of z~ is zero. Otherwise, 
the coordinate j of z. is a random number between 0 and 10. Finally, we com- 
puted b = Qx~ + Rz.. The initial point (x0, z0) for running the box constrained 
minimizer with problem (6) (p = 1, p = 2) was generated as in the first set of 
experiments. We studied the influence of/3 on the efficiency of the approach (6) for 
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TABLE II. Non-reducible 
problems 

/3 Successful  cases 

o. 10 (8) 
1. 10 (9) 
2. 9 (9) 
3. 9 (11) 
4. 10 (12) 
5. 10 (12) 
6. 10 (12) 
7. 10 (15) 
8. 10 (17) 
9. 10 (16) 
10. 10 (18) 

finding global solutions of (6), keeping in mind that the coincidence of stationary 
points and global minimizers is only guaranteed for/3 = 0. For each value of/3 
we ran ten problems. In Table II we report the number of cases where the global 
minimizer was found and, between parentheses, the average number of iterations 
of the successful runs. In this table we also observe that the solution of the HLCP 
using (6) was found almost always, even when we do not know if the hypothesis 
"RQ T positive semidefinite" holds. 

3.3. THIRD SET OF EXPERIMENTS 

We solved two classical variably dimensioned linear complementarity problems 
using (6) (p -- 1, p = 2). For these problems, we report the number of iterations 
(ITER), the number of functional evaluations (FE) and the execution time, in 
seconds (TIME) used by the box minimizer. 

In all these tests we used as initial point (x0, z0), where 

x o  = ( a , . . . , a )  r , 

[Zo]i = max {0, [ M x o +  q]i}, i =  1 , . . . , n ,  

and a >_ 0 is a given parameter. 
The tests problems were the following: 

PROBLEM VD1. See [8], [12] (chapter 6) and [9]. 

nvariable, q =  ( - 1 , . . . , - 1 )  T, 

[M]~i = 1, i = 1 , . . . , n ,  
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[M]ij = 2, i = 1 , . . . ,  n -  1, j > i, 

[M]ij = O, i = 1 , . . . ,  n -  1, j < i. 

PROBLEM VD2. See [8], [12] (chapter 6) and [9]. 

nvariable,  q =  ( - 1 , . . . , - 1 )  T, 

[M]ii = 4 ( i -  1) + 1, i = 1 , . . . , n ,  

[M]ij = [M]ii + 1, i = 1 , . . . , n -  1, j = i + 1 , . . . , n ,  

[M]ij = [M]jj + 1 j = 1 , . . . n -  1, i = j + 1 , . . . , n .  

The results are given in Table III. 
The experiments in Table III seem to confirm that using (6) and a box- 

constrained optimization solver is a reliable approach for solving many LCP's, 
even when the problem is not monotone. (The matrix M of problem VD2 is 
positive semidefinite, so the problem is monotone, but this is not the case of Prob- 
lem VD1.) In the case of Problem VD1, Murty [12] reports that the number of 
iterations used by both Lemke's algorithm and the principal pivoting method of 
Cottle and Dantzig grows exponentially with n. The same seems to happen with 
the method of Harker and Pang [8]. Kanzow [9] Shows that in his Newton-like 
method the number of iterations grows linearly with n. We observe that, using our 
approach, the number of iterations grows very slowly with n. In Problem VD2, 
exponential behavior also occurs for Lemke's algorithm and the principal pivoting 
method (see [12]). On the other hand, the number of iterations used by our method 
remains approximately constant for n < 200 and grows slowly as a function of n 
for n _> 200. It is worth mentioning that the performance of Problem VD1 is inde- 
pendent of the initial point. For Problem VD2, however, the convergence becomes 
slower when a ~ 0, to the extent of stopping by achieving the maximum allowed 
number of iterations. 

Observe that the matrix M of Problem VD2 is dense. So, it is remarkable that 
we could solve this problem for n = 1000 with a modest computer using only 
3169 seconds of CPU time. This performance should be completely impossible if 
algorithms using factorization of matrices were employed. 

3.4. FOURTH SET OF EXPERIMENTS 

We also used our method for solving the problem g!ven by Murty ([12], p. 354), 
where we chose the vector q as 

q = ( 1 , . . . , 1 , - n  + 2, n -  2) T. 
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TABLE III. Variably dimensioned linear complementarity 
problems 

Problem n a ITER FE TIME Finalf 

VD1 10 0 2 3 0.17 2.E-29 

20 0 3 4 0.33 7.E-25 

30 0 3 4 0.39 7.E-26 

40 0 3 4 0.55 9.E-25 

50 0 3 4 0 .71  4.E-28 

60 0 3 4 1 .05  5.E-22 

70 0 3 4 1 .21 6.E-26 

80 0 3 4 1 .59  1.E-23 

90 0 4 5 2 .31  5.E-22 

100 0 4 5 2.53 5.E-22 

110 0 5 6 3.79 4.E-22 

120 0 5 6 4.67 3.E-22 

130 0 4 5 4.34 2.E-23 

140 0 5 6 5.71 1.E-25 

~50 0 5 6 7.31 3.E-23 

200 0 6 7 13.40 8.E-23 

250 0 6 7 21.48 6.E-23 

300 0 6 7 29.87 4.E-19 

350 0 6 7 41.85 9.E-20 

400 0 5 6 49.88 8.E-20 

450 0 5 6 6 3 . 7 1  4.E-19 

500 0 5 6 78.87 8.E-19 

550 0 8 9 123.09 1.E-23 

600 0 8 9 135.99 2.E-18 

650 0 7 8 163.79 4.E-18 

700 0 5 6 170.26 5.E-19 

750 0 7 8 228.76 1.E-17 

800 0 6 7 233.27 6.E-22 

850 0 5 6 255.46 3.E-17 

900 0 7 8 327.02 2.E-17 

950 0 6 7 342.35 2.E-17 

1000 0 7 8 403.87 5.E-19 
VD2 10 0 4 5 0.22 2.E-27 

20 0 4 5 0.44 7.E-27 

30 0 4 5 0.77 2.E-24 

40 0 4 5 1 .32  4.E-23 

50 0 5 6 1 .92  3.E-23 

60 0 5 6 3.07 3.E-24 

70 0 5 6 3.90 2.E-23 

80 0 6 7 5.77 2.E-22 

90 0 7 8 7.63 7.E-22 
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TABLE IlL Continued 

Problem n a ITER FE TIME Finalf 

100 0 6 7 9.50 2.E-21 
110 0 6 7 12.42 5.E-22 
120 0 7 8 14.66 6.E-22 
130 0 8 9 19.78 1.E-21 
140 0 7 8 21 .09  5.E-23 
200 0 9 10 57.06 2.E-22 
300 0 8 9 135.94 2.E-21 
400 0 11 12 315.61 2.E-22 
500 0 11 12 500.92 5.E-20 
600 0 13 14 842.44 1.E-12 
700 0 13 14 1275.59 3.E-12 
800 0 15 16 1760.86 6.E-12 
900 0 19 20 2367.18 2.E-12 
1000 0 25 26 3168.60 3.E-16 
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This should be a very hard example for our approach, because the matrix M is 
negative definite. So, we did not expect a very good performance of our procedure 
in this case. In fact, in some cases, with p = 1 and p = 2 we could only obtain 
stationary points of (6) which were not global minimizers. Thus, we decided to 
carry out different experiments with this problem, increasing the value of p. We 
expected that better results could be obtained giving larger weights to the difficult 
constraint Mz + q - z = 0. The results are in Table IV. It is apparent from these 
numerical results that our approach looks promising, even in those situations where 
there exist stationary points such that rT, RQTr, > 0. Observe that in most cases 
we found values of p which led us to global minimizers of (6). In a few cases 
(n = 700, 800 and 850) the value of the objective function at the final point is 
small, but it is greater than 10 -8 . However, even in these cases we could verify 
that the final point was an approximate global minimizer. 

4. Final Remarks 

The reduction of a nonlinear programming problem to a minimization problem with 
simple bounds is very attractive, considering the present state of art of optimization 
software development, because efficient large scale optimization solvers with box 
constraints exist. These algorithms are only local, in the sense that convergence 
is guaranteed only to first order stationary points of the minimization problem. 
The most natural bound constrained minimization problems associated to (1) is the 
quadratic programming problem (4). However, even when the HLCP is monotone 
and solvable, stationary points of (4) can exist that are not global minimizers. We 
proved that this is not the situation of problem (6), for which stationary points are 



T A B L E  IV. M u r t y ' s  negat ive  definite p rob lem 

Problem n , a p ITER FIE TIME Final f 

Murty 50 0,8 1 3 41 1.04 57.3 

10 2 38 0.77 7270 

20 16 57 1.92 1,E-9 

100 1 13 34 3.46 3,E-12 

150 1 18 110 5.87 5710 

10 22 82 7.85 4,E-9 

200 1 20 29 5.44 7,E-9 

250 1 12 37 6.92 9,E-9 

300 1 9 19 5.10 1.E-15 

350 1 3 41 4.34 3030 

10 3 41 4.11 30300 

20 5 8 1.81 5.E-17 

400 1 3 41 5.22 39600 

10 3 41 5.77 396000 

60 24 87 20.59 3.E-10 

450 1 3 41 5.82 50200 

10 3 41 6.86 502000 

30 10 17 7.58 5.E-10 

500 1 3 41 6.32 62000 

10 3 41 7,09 620000 

1200 7 21 6.31 I.E-10 

550 1 3 41 6.65 75100 

10 3 41 6.59 751000 

1400 8 22 7.47 9.E-12 

600 1 3 41 7.69 89400 

10 3 41 9.06 894000 

80 13 25 10.27 3.E-12 

650 0.8 1 3 41 8.35 105000 

10 3 41 9.28 1050000 

40 8 15 7.31 4.E-22 

700 1 3 41 9.22 122000 

10 3 41 10.97 1220000 

800 18 98 39.71 3.E-4 

800 1 3 41 9.88 159000 

10 3 41 10.49 1590000 

50 8 35 11.97 5.E-5 

850 1 3 41 10.55 180000 

10 3 41 11.81 1800000 

1100 21 100 50.04 2.E-3 

900 1 3 41 11.15 202000 

10 3 41 12.41 2020000 

50 13 28 16.64 2.E-16 

950 1 3 41 11.26 225000 

10 3 41 10.88 2250000 

50 13 31 18.29 3.E-9 

1000 1 3 41 12.41 249000 

10 3 41 14.77 2490000 

20000 12 37 22.85 8.E-18 
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necessarily global minimizers under conditions that are strictly more general than 
the monotonicity of the HLCP. 

Current research involves the extension of the approach presented in this paper 
to nonlinear complementarity problems and variational inequalities. 
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